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Functions that map boolean vectors into the integers are important for the design and 
verification of arithmetic circuits. MTBDDs and BMDs have been proposed for representing 
this class of functions.  We discuss the relationship between these methods and describe a 
generalization called hybrid decision diagrams which is often much more concise. 
We show how to implement arithemetic operations efficiently for hybrid decision diagrams. In 
practice, this is one of the main limitations of BMDs since performing arithmetic operations 
on functions expressed in this notation can be very expensive. 
In order to extend symbolic model checking algorithms to handle arithmetic properties, it 
is essential to be able to compute the BDD for the set of variable assignments that satisfy 
an arithmetic relation. Bryant and Chen do not provide an algorithm for this. 
In our paper, we give an efficient algorithm for this purpose.    Moreover, we prove that 
for the class of linear expressions, the time complexity of our algorithm is linear in the 
number of variables.   Our techniques for handling arithmetic operations and relations are 
used intensively in the verification of an SRT division algorithm similar to the one that is 
used in the Pentium. 



1.    Introduction 

Functions that map boolean vectors into the integers are important for the design and verifi- 
cation of arithmetic circuits. In this paper, we investigate how to represent and manipulate 
such functions efficiently. In a previous paper [6], we have proposed two ways (MTBDDs 
and BDD arrays) for representing this class of functions using Binary Decision Diagrams. 
Recently, Bryant and Chen [4] have proposed Binary Moment Diagrams (BMDs) for repre- 
senting this class of functions. In this paper, we show that the BMD of a function is the 
MTBDD that results from applying the inverse Reed-Muller transformation [9] to the func- 
tion. Furthermore, it can be computed using the techniques that we have developed. The 
transformation matrix in this case is the Kronecker product [2] of a number of identical 2x2 
matrices. We show that the Kronecker products of other 2x2 matrices behave in a similar 
way. In fact, the transformations obtained from Kronecker products of other matrices will 
in many cases more concise than the BMD. We have further generalized this idea so that the 
transformation matrix can be the Kronecker product of different matrices. In this way, we 
obtain a representation, called the Hybrid Decision Diagram (HDD), that is more concise 
than either the MTBDD or the BMD. 

A similar strategy has been used by Becker [7]. However, his technique only works for 
the boolean domain and is not suitable for functions mapping boolean vectors into integers. 
When using his technique, all of the transformation matrices, the original function and the 
resulting function must have boolean values. Our technique, on the other hand, works over 
the integers. By allowing integer values, we can handle a wider range of functions. Moreover, 
we can obtain larger reduction factors since we have more choices for the transformation ma- 
trices. When our technique is applied to boolean functions, it can often achieve comparable 
and sometimes better results than dynamic variable reordering. Thus, in some cases, it can 
serve as an alternative to dynamic variable reordering. We conjecture that a combination of 
both techniques together may result in reductions that neither technique can achieve alone. 

One of the main limitations of Bryant and Chen's work is that performing arithmetic op- 
erations on functions represented by BMDs is very expensive. We show how these operations 
can be implemented not only for BMDs, but for hybrid decision diagrams as well. Although 
the worst case complexity of some of these operations is exponential, our algorithms work 
quite well in practice. In addition, we show how logical operations can be performed on 
hybrid decision diagrams that are used to represent boolean functions. 

Most of the properties that we want to verify about arithmetic circuits can be expressed 
as arithmetic relations. In order to extend symbolic model checking algorithms [5] to handle 
arithmetic properties, it is essential to be able to compute the BDD for the set of variable 
assignments that satisfy a relation. Bryant and Chen do not provide an algorithm for this. 
In this paper, we give an efficient algorithm for this purpose. Moreover, we prove that 
for the class of linear expressions, the time complexity of our algorithm is linear in the 
number of variables. Our techniques for handling arithmetic operations and relations are 
used intensively in the verification of a SRT division algorithm similar to the one that is 
used in the Pentium. 

Our paper is organized as follows: Section 2 gives the basic properties of MTBDDs 
that are used in the remainder of the paper.  In particular, this section shows how matrix 



operations can be implemented. Section 3 describes the relationship between BMDs and the 
inverse Reed-Muller transformation. This section also introduces Kronecker product and 
shows how it can be used to generalize BMDs. The next section introduces hybrid decision 
diagrams and provides experimental evidence to show the usefulness of this representation. 
Sections 5 and 6 are the main sections of the paper. In Section 5, we show how arithmetic 
operations can be implemented. In Section 6, we give an efficient algorithm for computing the 
set of assignments that satisfy an arithmetic relation expressed in terms of hybrid decision 
diagrams. The paper concludes in Section 7 with a brief summary and a discussion of 

directions for future research. 

2.     Multi-terminal binary decision diagrams 

Ordered binary decision diagrams (BDDs) are a canonical representation for boolean for- 
mulas proposed by Bryant [3]. They are often substantially more compact than traditional 
normal forms such as conjunctive normal form and disjunctive normal form. They can also 
be manipulated very efficiently. Hence, BDDs have become widely used for a variety of 
CAD applications, including symbolic simulation, verification of combinational logic and, 
more recently, verification of sequential circuits. 

A BDD is similar to a binary decision tree, except that its structure is a directed acyclic 
graph rather than a tree, and there is a strict total order placed on the occurrence of 
variables as one traverses the graph from root to leaf. Algorithms of linear complexity exist 
for computing BDD representations of -■/ and fVg from the BDDs for the formulas / and g.. 

Let / : Bm —► Z be a function that maps boolean vectors of length m into integers. 
Suppose rai,... ,nyv are the possible values of /. The function / partitions the space Bm 

of boolean vectors into N sets {Sx,--- ,SN], such that Si = { x \ f(x) == n; }. Let /,- be 
the characteristic function of Si, we say that / is in normal form if f(x) is represented as 
Eili fi(%) ■ ni- This sum can be represented as a BDD with integers as its terminal nodes. 
We call such DAGs Multi-Terminal BDDs (MTBDDs) [6, 1]. 

Any arithmetic operation 0 on MTBDDs can be performed in the following way. 

h{x)   =   f(x)Qg{x) 
N N' 

=   E/.-(^)'W,-0X)fl,j(*)-ni 

N   N1 

= EE/''(4-(s)(ni0nl) 
t=i i=i 

JV" 

k=l    mQn'j-n'^ 

We now give an efficient algorithm for computing f(x) 0 g(x). 

• If / is a leaf, then for each leaf of g, apply 0 with / as the first argument. 



Figure 1: BDDs for / and g 
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Figure 2: BDD of / 0 g 

• If g is a leaf, then for each leaf of /, apply 0 with g as the second argument. 

• Otherwise, / and g have the form in Figure 1, and the BDD for / 0 g, depending on 
the relative order of X{ and a?j, is given in Figure 2. 

The resulting diagram may not be in normal form. In order to convert it into normal form, 
a reduction phase is needed. The algorithm for this phase is essentially identical to the 
reduction phase in Bryant's algorithm for constructing BDDs [3] . 

Let M be a 2k x 2' matrix over Z. It is easy to see that M can be represented as a 
function M : Bk+l —>■ Z, such that M,j = M(x,y), where x is the bit vector for i and 
y is the bit vector for j. Therefore, matrices with integer values can be represented as 
integer valued functions using the representation shown above. We can also perform various 
matrix operations using MTBDD representation. In particular, matrix multiplication can 
be computed in the following way: Suppose that two matrices A and B have dimensions 
2k x 2l and 2l x 2m, respectively. Let C = A x B be the product of A and B, then C will 
have dimension 2k x 2m. If we treat A and B as integer-valued functions, we can compute 
the product matrix C as 

C(x,z) = ^2A(x,y)B{y,z), 

where J2y means "sum over all possible assignments to r/". In practice, Y^yM(x,y) can be 
computed as: 



J2  M(x,yi,y2T--,ym) 
l—Vm 

■.-■■Vm-l   Vrn 

YJ        (^"(^,J/l,y2, - - • ,?/m-l,0) 

VlV2—Vm 

yitn—Vm-i 

+ M(x,y1,y2,...,ym-i,l)) 

In this way, each variable in y is eliminated by performing an addition. Although this 
operation works well in many cases, the worst case complexity can be exponential in the 
number of variables. 

Such integer functions can also be represented as arrays of BDDs. These BDDs have 
boolean values and each of them corresponds to one bit of the binary representation of the 
function value. In general, it is quite expensive to perform operations using this representa- 
tion. 

3.      Kronecker transformations 

Recently, Bryant and Chen[4] have developed a new representation for functions that map 
boolean vectors to integer values. This representation is called the Binary Moment Diagram 
(BMD) of the function. Instead of the Shannon expansion / = xf\ + (1 — x)fo, they use 
the expansion f — fo + xf, where /' is equal to /i — f0. After merging the common 
subexpressions, a DAG representation for the function is obtained. They prove in their 
paper that this gives a compact representation for certain functions which have exponential 
size if represented by MTBDDs directly. 

There is a close relationship between this representation and the inverse Reed-Muller 
transformation [9]. The matrix for the inverse Reed-Muller transformation is defined recur- 
sively by 

So = 1        Sn = 

which has a linear MTBDD representation. Let i € Bn be the binary representation of 
integer 0 < i < 2n. A function / : Bn —> N can be represented as a column vector 
where the value of the ith entry is f(i). We will not distinguish between a function and its 
corresponding column vector. The inverse Reed-Muller transformation can be obtained by 
multiplying the transformation matrix and the column vector / = S x / using the technique 
described in previous section. 

Theorem 1  The MTBDD of f is isomorphic to the BMD off. 

Proof: The theorem is easy to prove by induction on the number of variables. 

Base Case: If the number of variables is 0, the function is a constant and f = f. Both the 
MTBDD of / and the BMD for / are terminal nodes and therefore isomorphic. 



-Sn-1 Sn-1 

Figure 3: MTBDD for Sn 

Induction Step: Let / : Bn -> N.  The roots of both the BMD for / and the MTBDD 
for / are xn. The left child of the root of the BMD for / is the BMD for f\Xn=0, while 
the right child is the BMD for f\Xn=i - f\Xn=o- When / is represented as a column vector, 
the upper half is f\Xn=o and the bottom half is f\Xn=i-  The inverse Reed-Muller matrix is 

/     Sn-1 0 I. The result of the transformation is therefore: 

Sn-i 0 
~bn—l     <->n-l 

X 
f\xn=0    |  _   ( Sn-1  X f\x„=0 
f\xn=l   j \   Sn-1  X (f\x„=l - /U„=o) 

If this vector is represented by MTBDD, the left child is the MTBDD for the inverse Reed- 
Muller transform of /|a;„=o and the right child is the MTBDD for the inverse Reed-Muller 
transform of f\Xn=i — f\x„=o- By induction hypothesis, both children are isomorphic to the 
children of the root of the BMD for /. Therefore the BMD of / is isomorphic to the MTBDD 
for /. □ 

The Kronecker product of two matrices is defined as follows: 

/ an    ...    alm \ ( anB    ...    almB \ 

A®B 

\ ani 

B 

I \ aniB   ...   anmB ) 

The inverse Reed-Muller matrix can be represented as the Kronecker product of n identical 
2x2 matrices: 

Jn  — 
Sn-1 0 

~~ Jn—1      <->n-l 

1    0 
-1  1 &n- 

1     0 
-1 1 

1     0 
-1  1 

The inverse Reed-Muller transformation is not unique in this respect. Other transfor- 
mations that are defined as Kronecker products of 2 x 2 matrices may also provide concise 
representations for functions mapping boolean vectors into integers. In particular, Reed- 
Muller matrix Rn and Walsh matrix Wn can be represented as Kronecker products shown 



below: 

Rn = 
Rn-1 

Rn-1 

0 
Rn-1 

1   0 
1 1 Rn-1 — 

1     0 
1     1 

1     0 
1     1 

and 

Wn 

Wn„r 1        1 
1      -1 

Wn_1 = 
1        1 
1     -1 

1        1 
1     -1 

Although a Kronecker transformation can be performed by matrix multiplication, there 
is a more efficient way of computing it. It is a well known property of the Kronecker product 
that 

k k 

(g) Ai = Y[(I2i-i ® Ai ® I2k-i), 
i=0 2=0 

where each Ai is a 2 x 2 matrix and h is the identity matrix of size k x k. A transformation 

of the form (/a*-1 <8> A' <S> Jo*-') is called a frasic transformation.   Let At- = , 
\ «io   on / 

and let g be a function represented as a MTBDD, then the basic transformation g' = 

(72>-i <8> A' <8> ^2*-») x 5 can ^e computed as 

g' — if Xi then a00 ^1^=0 + «oi ^Ui=i else aio <7U=o + «n fl,Ui=i- 

As a result of this observation, the Kronecker transformation can be performed by a series of 
basic transformations. Moreover, it can be proved that the order of the basic transformations 
does not affect the final result. 

In fact, the Kronecker product of any non-singular 2x2 matrices can be used as a 
transformation matrix and will produce a canonical representation for the function. If the 
entries of the 2x2 matrix are restricted among {0,1, —1}, there are six interesting matrices 

1   0 
0   1 

1     0 
-1    1 

1   0 
1   1 

0     1 
-1  1 

0   1 
1 1 

, and 
1     1 
-1    1 

All other matrices are either singular or would produce BDDs that are isomorphic to one of 
the six matrices. 

We have applied these transformations to the functions discussed in paper[4]. The trans- 
formation can be partitioned into two groups of three each.   The MTBDDs of the results 
after applying the transformations in the same group have the same complexity. 
Let X = £?=o x{l\ Y = £™ 0 yfi, X3 = £?=o Xij2\ then 

base matrix X X' XY xk 
nUXj 

1   0 
0   1 

1   0 
1  1 

0   1 
1  1 

0(2") 0(2 2n^ 0(2n+r' 0(2kn) o(n-=02
no 

1     0 
-1 1 

0     1 
-1   1 

1     1 
-1   1 

0{n) 0(n2) 0(nm) 0{nk 

omUni) 



For example, the complexity of XY after the Kronecker transform with base matrix 

I J can be obtained from the complexity of a more general formula / = (^™=o °ixi + 

c) • {TT-o djVj + d) where c; and dj are constants. We can prove that the resulting MTBDD 
size for this formula after the transformation does not exceed 2nm + 2n + 2m + l by induction 
on the number of total variables. The base case when there are no variables is trivial. For 
simplicity, let's suppose xn is the top variable. Then the right child should be the transformed 
MTBDD for 

n—1 TO n—1 m m 

/k=i-/U„=o = (J]ciXi+cn+c)-(^(iij/i+rf)-(J]csXi+c)-(^c/ij/J4-c?) = Cn-^d^+d). 
i=0 j=0 i=0 j=0 j=0 

By induction hypothesis, the size for the left child does not exceed 2m + 1. In a similar 
manner, we can show the left child is the transformed MTBDD for 

n—1 m 

/U„=i + f\xn=o = (Z)2ciXi +Cn +2c) • (52djyi +<0- 
i=o i=o 

By induction hypothesis, the size does not exceed 2(n — l)m+2(n — l) + 2m+l = 2nm+2n — l. 
Therefore the total size of the transformed BDD has an upper bound of (2nm + 2n — 1) + 
(2m + 1) + 1 = 2nm + 2n + 2m + 1. 

The possibility of using BMDs to represent boolean functions is discussed in [4]. In gen- 
eral, the BMD does not appear to be better than the ordinary BDD for representing boolean 
functions. In order to see why this is true, consider the boolean Reed-Muller transformation, 
which is sometimes called the Functional Decision Diagram or FDD [8]. This transformation 
can be obtained by applying the modulo 2 operations to all of the terminal nodes of the 
BMD. Consequently, the size of FDD is always smaller than the size of the BMD. Since the 
inverse boolean Reed-Muller transformation is the same as the boolean Reed-Muller trans- 
formation, the FDD of the FDD is the original BDD. Therefore, for every function / such 
that |FDD/1 < |BDD/1, there exists another function /' which is the boolean Reed-Muller 
transform of / such that |BDD//| < |FDD//|. In particular, both the BMD and the FDD 
representations for the middle bit of a multiplier are still exponential. 

4.     Hybrid decision diagrams 

In the previous sections, we have discussed transformations that can be represented as the 
Kronecker product of a number of identical 2x2 matrices. If the transformation matrix is 
a Kronecker product of different 2x2 matrices, we still have a canonical representation of 
the function. We call transformations obtained from such matrices hybrid transformations. 

A similar strategy has been tried by Becker [7]. However, his technique only works for the 
boolean domain. When using his technique, all of the transformation matrices, the original 
function and the resulting function must have boolean values. Our technique, on the other 
hand, works over the integers. By allowing integer values, we can handle a wider range of 
functions. Moreover, we can obtain larger reduction factors since we have more choices for 
transformation matrices. 

7 



We can apply this idea to reduce the size of BDD representation of functions. Since 
there is no known polynomial algorithm to find the hybrid Kronecker transformation that 
minimizes BDD size, we use a greedy algorithm to reduce the size. If we restrict the entries 
in the matrix to the set {0,1, —1}, then there are six matrices we can try. For each variable, 
we select the matrix that gives the smallest BDD size. The BDDs obtained from such 
transformations are called Hybrid Decision Diagrams (HDDs). We have tried this method 
on the ISCAS85 benchmark circuits. In some cases we have been able to reduce the size 
of BDD representation by a factor of 1300. However, reductions of this magnitute usually 
occur when the original function has a bad variable ordering. If dynamic variable ordering 
is used, then our method gives a much smaller reduction factor. 

example circuit without reordering with reordering 

circuit | input | output BDD| |BMD| |HDD BDD BMD HDD 

cl355 41 1327 9419 1217689 2857 4407 478903 1518 

cl908 33 12 3703 140174 1374 1581 154488 632 

c5315 178 676 679593 2820 521 108 5106 107 

Table 1: Experimental results for hybrid transformations of some ISCAS85 circuits 

We have tried several techniques to increase the number of possible matrices. The first 
technique involves increasing the number of entries in the matrices. This can be accom- 
plished by allowing the entries to take larger values or by using the complex numbers 
{0,1, — l,i, — i,l + i,l — i,i — 1,—i — 1}. Unfortunately, neither extension improved the 
results significantly. 

The second technique involves using transformation matrices that are Kronecker products 
of larger matrices. For example, we have tried hybrid Kronecker transformations based on 
4x4 matrices instead of 2 x 2 matrices. Although we have been able to reduce the BDD 
size even further using this technique, the time it takes to find such transformations is much 
bigger since the number of possibilities is considerably larger. 

Note that our technique can achieve comparable and sometimes better results than dy- 
namic variable reordering. Thus, in some cases, it can serve as an alternative to dynamic 
variable reordering. We conjecture that the combination of both techniques together may 
result in reductions that neither technique can achieve alone. 

5.     Arithmetic operations on hybrid decision diagrams 

In order to make the techniques described in the previous sections more useful, it is desirable 
to-be able to perform various arithmetric operations on on hybrid BDDs. In this paper, we 
only consider the cases of addition and multiplication of two integers. 

Suppose that / is transformed into /' by the matrix 2\ and g is transformed into g'. by 
the matrix T2 using the techniques discussed in the previous sections. Scalar multiplication 



is simple to perform. 
(c/)' = n x (c/) = cTx x / = c/' 

When T\ = T2, finding the sum of two function is also simple. 

(f + g)' = T1x(f + g) = T1xf + T1xg = f, + g' 

If T\ 7^ T2, the transformation applied to the sum must be determined first. Suppose we use 
T2 as the transformation matrix for the result, 

(f + g)' = T2 x {f + g) = T2 x f + T2 x g = T2 xT,'1 x f + g'. 

Next, we consider how to perform multiplication.    We choose T2 as the transformation 
matrix for (/ • g). Suppose the top level variable is a;,-. Assume the top level transform for 

'   oil     «12 

a2i   a22 j y u21   u22 

&11     &12 

&21     &22 

/ is 
( a'     a'    \ 

with inverse        ,n      ,12   ].   Assume also the top level transform for g is 

with inverse      ,.n    7/
12    . Then T2 

V   621     &22   / 

&11     &12 

&21     ^22 
52 = 

&11 $2     W2S2 
b2\o2   b22S2 

/' 

Figure 4: BDDs for /' and g' 

(f-9)'i (f-g)'r 

U-9)' 

Figure 5: BDD of (/ • g)' 

U-g)'   =   T2x(/-^) 
_   ( h\Si   b12S2 \ x f fo- go 

\ b2XS2   b22S2 )     \ fi-gi 

( bll(f0-g0y + b12(fi-9i)') 
~ A b2i(f0-g0)' + bi2(fi-9i)' 

9 



Consequently, 

(f-g)'i   =   bnifo ■ go)'+ buih ■ 9iy 
=   MKi// + «ia/r) • (6ii5" + bi29r))' + MKi/i + a'22fr) ■ {b'21gi + b'22gr))' 
=   (biia'nb'n + b12a'21b'21)(fi ■ gi)' + (fcna'n&ia + b12a21b'22)(fi ■ gr)' 

+ (bna'12b'n + b12a22b21)(fr ■ gi)' + (bna'12b'12 + b12a'22b'22)(fr ■ gr)' 

(f-g)'r   =   M/o-tfO' + M/i'ft)' 
=   b21((a[Ji + a'12fr) ■ (b'ngi + b'12gT))' + b22{(a'21fi + a'22fr) ■ (b'21gi + b22gT))' 

=    (62iaii6n + b22a'21b21)(fi ■ gt)' + {bna'^b'^ + b22a'21b'22)(fi ■ gT)' 

+{b2ia'12b'u + b22a22b'21)(fr ■ gi)' + {b21a'12b'12 + b22a'22b'22)(fr ■ gr)' 

Since both (/ • g)\ and (/ • g)'r can be computed in term of (/; • g{)', (// • gr)\ (fr ■ gi)', and 
(fr • gr)', we can compute the transformation of the product in a recursive manner. If we 
store these intermidiate results, the total number of recursive calls to compute (/ • g)' will 
be at most |/'||</|. Because of the additions that are needed in the computation, the worst 
case complexity can still be exponential. However, in practice, this algorithm works quite 
well. As an example, in Table 2, we show the time it takes to compute the hybrid decision 

diagram for (E-U z;28') • (Ej=o2/j2i) from tne hybrid decision diagrams for (ELo^2*) and 

(E5U,y;2>'). 

n 10 20 30 40 50 60 70 80 90 100 
time(sec) 1.6 2.0 2.2 2.5 3.0 3.5 3.5 4.5 5.5 6.6 
HDD| 139 479 1019 1759 2699 3839 5179 6719 8459 10399 

Table 2: Experimental results for computing (E"=o xi^) • {YTj=oyfi3) 

Now that we are able to add and multiply functions, we can perform all of the standard 
logical operations. For example (->/)' = (1 - /)' = V - f and (/ A g)' = (/ • g)'. 

6.     Equations and inequalities 

Frequently, it is useful to be able to compute the set of assignments that make /i ~ /2, where 
~ can be one of =,^, <,<,>, or >. For example, the following inequality is extremely 
important for the correctness of the radix-4 SRT floating point division algorithm. 

—2 • divisor < 3 • remainder < 2 • divisor 

Both divisor and remainder in the inequality can be regarded as arrays of boolean variables. 
In order to verify the correctness of the algorithm, it is necessary to determine the set of 
assignments to these variables that make the inequality true. 

Finding the set of assignments that satisfy an inequality can be reduced to the problem 
of finding the set of assignments that make a function / positive. Equations can be handled 

10 



in a similar manner. A straightforward way of solving the problem is to convert / to an 
MTBDD and then pick the terminal nodes with the correct sign. However, this does not 
work very well in general, because some functions have MTBDDs with exponential size but 
hybrid BDDs of polynomial size. For example, let /i = Y4L0 xi^ and fi — Y^jLoUj^ ■ Both 
of these functions and their difference have linear size BMDs. The BDD for the set of 
assignments satisfying /i — /2 > 0 also has linear size. But the MTBDD size for /i — fa is 
exponential. 

We have developed an algorithm that can substantially reduce the cost for computing 
arithmetic relations between certain functions. In the process, we only need to know the 
sign of the function values. Thus, if we find out that all of the values in a sub-HDD have the 
same sign, we can conclude that all assignments in the sub-HDD will have the same value 
for the relation. Consequently, we don't need to continue to expand this sub-HDD. 

To obtain a good algorithm for this problem, it is necessary to determine efficiently if a 
sub-HDD has uniform sign. This can be achieved by computing upper and lower bounds for 
the sub-HDD. The algorithm given below determines this information. If the intermediate 
results are stored, the algorithm takes time linear in the number of BDD nodes. 

bound_values(f, upper,  lower) 
begin 

if(f is terminal node) 
upper = lower = f.value; 

bound_values(left(f), upperl,  lowerl); 
bound_values(right(f), upper2,  lower2); 

let {{all,  al2},  {a21,  a22}} be the inverse matrix at node f; 

upperll = if all>0 then all*upperl else all*lowerl; 
upperl2 = if al2>0 then al2*upper2 else al2*lower2; 
upper21 = if a21>0 then a21*upperl else a21*lowerl; 
upper22 = if a22>0 then a22*upper2 else a22*lower2; 

lowerll = if all>0 then all*lowerl else all*upperl; 
lowerl2 = if al2>0 then al2*lower2 else al2*upper2; 
lower21 = if a21>0 then a21*lowerl else a21*upperl; 
lower22 = if a22>0 then a22*lower2 else a22*upper2; 

upper = max(upperll + upperl2, upper21 + upper22); 
lower = min(lowerll + lowerl2,  lower21 + lower22); 

end 

It is easy to prove that this algorithm gives lower and upper bounds for the function 
represented by the hybrid BDD. Let l\\ stand for lowerll, Un stand for upper 11, etc. Let 
// stand for left (f), fr stand for right (f). Suppose that the recursive calls to the children 

11 



produce correct values. Then h < fi < «1 and l2 < fr < «2- 

hi < aufi < un 

*12 < 0l2.fr  < «12 

hi < a2ifi < u2\ 

hi < a22fr < «22 

_ ( «ii   öi2 \ x ( fi \ _ f aii/o + «12/1 \ 

V  «21     «22/ \  fr   ) V  a21f° + a22^   / 

hi + ^12 < /o < «11 + «12     . 

^21 + ^22 < fl < «21 + «22 

lower = min(/n+/i2,/21+/22) < min(/0,/i) < / < max(/0,/i) < max(u11+u12,u2i+«22) = upper 

Therefore, the lower and upper give correct bounds for /. 

The improved algorithm for computing the BDD for the set of assignments that make the 
function / positive is given below. A similar algorithm is used to find the set of assignments 
that make a function zero. 

bdd greater_than_0(f) 
begin 

if(f is terminal node) 
if(f.value > 0) 

return(True); 
else 

return(False); 

bound_values(f, upper,  lower); 
if(upper <= 0) 

return(False); 
if(lower > 0) 

return(True); 

let {{all,  al2},  {a21,  a22}} be the inverse matrix at node f; 
left = greater_than_0(all * left(f) + al2 * right(f)); 
right = greater_than_0(a21 * left(f)  + a22 * right(f)); 
return(bdd_if_then_else(level(f),  left,  right)); 

end 

This algorithm works extremely well for verification of arithmetic circuits. The following 
theorem guarantees the efficiency of this algorithm for the set of linear expressions when the 
Hybrid Decision Diagrams are BMDs. Most of the formulas that occur duing the verification 
of the SRT division algorithm are in this class.    These expressions have the form / = 
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Figure 6: BMD for ££i c,-/,- 

YX=icifi-> where /; = J2]=oxij^ iov 1 < i < m and the Q'S are integer constants. We use 
the variable ordering xln, x2n, • • ■, xmn,..., £10, x2o, • • •, xm0. Because f\Xij=\ - f\Xij=o = Ci2J 

is a constant, the BMD for / is shown in Figure 6 

Lemma 1   When f is represented as a BMD, the number of recursive calls to the great er_than_0 
procedure for computing the BDD for f at each level cannot exceed 4(2I^i lc«|)- 

Proof: Suppose we consider the recursive calls to the BMD nodes that has Xij as the top 
variable. The inverse transformation matrix for BMD nodes is the 2x2 Reed-Muller matrix 

I j. Thus, the recursive calls in the procedure greater_than_0 apply to either the left 

child or the sum of both children. The BMD nodes that are recursively called with Xij as top 
variable must be the sum of the sub-BMD in Figure 6 with top variable Xij and some of the 
right children of ancestors of the sub-BMD. The right children of all of the ancestor nodes 
of this sub-BMD are constant nodes with the value c^2' where 1 < k < m and I > j. The 
sum of those right children can be rewritten in the form d23 where d is an integer constant. 
Therefore the BMD nodes with top variable x^ have the form shown in Figure 7. 

T et ci _ J ck   ck>0        and c„ _ f 0     ck > 0 
k ~ 1   0     otherwise k      \ ck   otherwise 

When we apply the procedure bouncLvalues to this BMD, the upper bound computed is 

equal to d2j + Ef~o E^=i 42' + E**=i 42J- This can be proved by induction on the structure 
of the BMD. The base case is trivial. For the induction step, consider node with variable 
Xij. There are two cases. The first case is when i < m. In this case, by induction hypothesis, 
upper 1 is equal to d2j + £;=o £™=1 c'k2

l + £™=i+i c'k2
3. Since the right branch is a constant, 
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Figure 7: BMD nodes explored at level x^ 

upper2 is c{l3. Therefore, 

upper   =   max(upperl,upperl + upper2) 

=   upperl + if upper2 >= 0 then upper2 else 0 
j—1   m m 

= d2j + E E42' + E 42' + (if °i>= ° then °i else °)2i 

;=o fc=l k=i+l 
j—1   m m 

= ^' + EE42'+ E 42
J
 + C;-2

J 

;=o fc=i fc=i+i 

j—1   m m 

= ^• + EE42/ + E42J 

/=0 fc=l fc=t 

Similar proof can be obtained for the other case when i = m. In the same way, we are able to 
prove that the lower bound computed by the procedure is dfi? + YfiZo S/T=i 4'2' + 11T=i 4'2J■ 
Hence 

j—1   m m 

upper   =   ^+EE42' + E42J 

1=0 k=\ k=i 

j      m 

< ^ + EE42' 
1=0 fc=l 
m 

= ^ + E4(2J+1-i) 
fe=i 

< ^ + E42J+1 

k=\ 
m 

=   2'(d + 2E4) 
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j—1   m m 

lower   =   ^' + X:E4"2
/
 + E4

,
2

J 

1=0 k=\ k=i 

3     m 

> dx + Y.Y.w 
l=o k=i 
m 

k=\ 
m 

m 

fc=i 

If d < —2E™=i 4) then upper is negative or 0 and the algorithm will return constant 
false. Likewise, if d > — 2 Ylk-i cki l°wer is positive and the algorithm will return constant 
true. Therefore, the recursive calls to the children can only occur when —2 XX=i c'k < ^ ^ 
-2 Er=i 4'- Since d is integer, there can be at most 2 x (-2 ££=i 4' + 2 E^=i 4) = 4E™=i lcfc| 
recursive calls. | | 

Theorem 2   The complexity o/greater_than_0 for f is 0(n2J2k=i \ck\)- 

Proof: There are n levels. Each level takes 4EfcLi \ck\ recursive calls. Each recursive call 
takes time 0(n) to compute the upper and lower bound values. Therefore, the total time is 

0("aEL!N).D 
In the case of linear inequalities, all the new BMDs that are generated have the form of 

c + g, where c is a constant and g is an existing BMD. If we remember the constant without 
actually adding it to the BMDs, we are able to avoid generating new BMD nodes. After 
introducing this technique, the complexity for compute greater_than_0(f) can be further 
reduced to 0{nY%=\ \ck\)- F°r the example we had at the beginning of the section, the 
relationship between the time it takes to compute the inequality and the number of bits is 
shown in the Figure 8. 

7.     Summary and directions for future research 

In this paper, we have discussed the relationship between MTBDDs and BMDs. We have 
also described a generalization called hybrid decision diagrams which is often much more 
concise. An efficient implementation of arithemetic operations on hybrid decision diagrams 
is also given. 

Computing the BDD for the set of variable assignments that satisfy an arithmetic relation 
is important for reasoning about arithmetic circuits. We give an efficient algorithm for this 
purpose. Moreover, we prove that for the class of linear expressions, the time complexity of 
our algorithm is linear in the number of variables. 

There are a number of directions for future research. Currently, we use a greedy algo- 
rithm to choose the appropriate transformation matrix at each level in a hybrid decision 
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Figure 8: time to compute —2 • divisor < 3 • remainder < 2 • divisor 

diagram. Although it seems unlikely that there is an efficient algorithm to find the optimal 
transformation, it may be possible to develop a better heuristic that would permit an even 
more concise representation. 

In hybrid decision diagrams, the transformation matrices for all the nodes at one level 
must be the same. If we allow these transformation matrices to differ, we should have more 
freedom in selecting the transformation and, therefore, be able to reduce the representation 
further. 

Finally, our algorithm for solving arithmetic relations works extremely well for linear 
equations and inequalities. Although the current algorithm can handle some nonlinear equa- 
tions and inequalities as well, it may be possible to extend this algorithm or to find a new 
algorithm that can handle more complicated nonlinear equations and inequalities. 
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